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Abstract

ECGs are highly distorted by the MRI environment,
making automated ECG analysis highly difficult. This
study aimed at implementing a machine-learning (ML)
based heartbeat classifier, using hand-crafted features, for
the automatic detection of ventricular heartbeats during
MRI. A model was trained on the MIT-BIH Arrhythmia
Database and assessed on an in-house database of ECG
acquired inside a 1.5T MRI (ECG-MRI).Features were ex-
tracted for each heartbeat from single-lead ECG signals
including QRS morphological features based on Hermite
functions, and RR interval-based features. A support vec-
tor machine was trained to classify normal (N) and ventric-
ular ectopic beats (V’). The classifier achieved F1 scores
of 0.85 on the V’ class on the validation fold on the MIT-
BIH database, while it only achieved F1 scores of 0.15 on
the ECG-MRI database. The proposed heartbeat classi-
fier was developed on the MIT-BIH arrhythmia database
using temporal features and QRS morphological features
based on the assumption they would be less distorted by the
MRI environment. However, even if performance on MIT-
BIH were acceptable (although slightly lower than state-
of-the-art approaches), results were poor on the ECG-MRI
database. The results highlight the need for further devel-
opments by suppressing MRI-related artifacts, and by re-
training on MRI specific datasets.

1. Introduction

Electrocardiogram (ECG) is a well-known clinical tool
for assessing the electrical activity of the heart [1], while
Magnetic Resonance Imaging (MRI) is a relatively recent
imaging modality assessing morphological and functional
depiction of the heart. ECG signals are acquired during
MRI examinations for two main reasons: (i) Synchroniz-
ing MRI image acquisition with the heart activity (move-
ment) in order to reduce motion artefacts, (ii) monitoring
patients during MRI acquisition[2].

Inside an MRI scanner, a patient is subjected to three
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electromagnetic fields generating artefacts: (i) RF pulses,
and (ii) varying magnetic fields (denoted gradients), during
MRI acquisition can induce a voltage on the ECG; (iii) A
strong static magnetic field, which in the presence of mov-
ing charged particles, like blood in the aorta also generates
a voltage. This results in a distorted ECG signal inside the
MRI scanner, which can impair the diagnosis usage of the
recordings. [3]

This study aims to assess the generalizability of classi-
cal ML techniques for the classification of heartbeats on
ECG signals acquired during MRI. We propose the use of
Hermite-based [4, 5] features for the classification of QRS
morphology which we assume to be less distorted by the
MRI environment.

2. Methods

2.1. Datasets

Beat Type | DS1 | DS2 || MRI | OF | IF | IS

N 45862 | 44251 || 24007 | 5271 | 5571 | 13165
S 944 1837 48 13 19 16
\'%A 4202 | 3608 1344 | 302 | 224 818

Table 1. Database beat distributions for DS1, DS2 and
MRI database including the full MRI database, in field
(IF), out of field (OF), and during sequence (IS).

2.1.1. MIT-BIH Arrhythmia database

A classifier was trained on Physionet MIT-BIH Arrhyth-
mia database [6]. Following the split proposed by [7], DS1
was used for training, and DS2 used a test set for compar-
ison with other approaches.

2.1.2. ECG in MRI Database

A private database [8,9] of ECG signals acquired inside
a 1.5T MRI scanner was built. The ECG signals had 3
leads forming a cross on the patient’s torso to mimic —V'y
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Figure 1. Electrode placement and ECG leads (blue ar-
rows) from the MRI database [8]. The dashed lines corre-
sponds to lead II, which was used on the MIT databases.

and Vz from the VCG. The total database contained 29
subjects. Among them, 9 subjects had ECG signals with
pathological V’ and/or S beats. 16 ECG recordings on av-
erage (ql=14, q3=19) were acquired for each subject. 3
were obtained outside the MRI out of field (OF), 3 inside
the MRI bore without sequence in field (IF), while the oth-
ers were acquired during sequence (IS). In total 492 ECG
recordings were annotated manually beat by beat. Since
the amount of S beats on the MRI database was too small
(fewer than 50 S heartbeats) to draw conclusions, the study
was restricted to the N and V’ beat types.

2.2. Data Preparation

A single ECG lead was analyzed: The first ECG chan-
nel for MIT-BIH recordings, and lead ECG1 for the MRI
database. The ECG signal was first band-pass filtered be-
tween 0.5 and 50Hz, and resampled to 360Hz (when nec-
essary). The ECG recording was rescaled to have its min-
imum to zero and maximum to one. The QRS positions
from the ECG annotation files were used for the extraction
of a window around the QRS complex. The window was
centered around each R peak with a window size of 333ms.
Within this window, the QRS complex was detrended and
centered to have a zero-mean.

2.3. Feature Extraction

Two classes of features were extracted for each heart:
(i) morphological features (ii) temporal features. Morpho-
logical features using Hermite function decomposition up
to degree 7 [5] were computed. The preceding (backward)
and following (forward) RR interval were also included.
Heart rate variability (HRV) features were computed us-
ing the last 60 and 180 heartbeats preceding the one con-

Llamedo Hermite
Truth N | 43590 661 43645 606
V> | 940 2668 | 467 3141
Prediction | N \'A N \'%A
Table 2. Confusion matrices on DS2 for the Llamedo

baseline and Hermite based classifier.

All OF IF IS

Truth N | 10858 13149 | 3953 1318 | 4031 1540 | 2912 10253
Vv’ | 131 1213 17 285 15 209 | 74 744

Prediction | N \'%A N \'%A N \'%A N \'%4

Table 3. Confusion matrices on MRI database for the Her-
mite based classifier.

sidered. These features included the coefficient of sam-
ple entropy (CoSEn) [10] and log of the mean RR inter-
val(rr_mean).

In parallel, the classification scheme proposed by
Llamedo et. al. [11] was used as a baseline. Eight fea-
tures were extracted following the preprocessing suggested
in [7, 11]. Four features were based on the autocorrela-
tion of the 4*" scale of quadratic spline wavelet transform
on the two available leads on MIT database. The other
four features were based on the RR interval time-series in-
cluding: log of forward and backward differences, average
RR interval over the last minute and 20 minutes before the
considered heartbeat. Outliers were removed via elliptic
envelope and a linear discriminant analysis classifier was
trained on DS1. For the recordings from the MRI database,
leads ECG1 and ECG3 were used.

24. Classifier Optimization

A support vector classifier (SVC) with radial basis func-
tion (RBF) kernel was trained. Its regularization parame-
ter C' was grid searched to maximize the five-fold cross-
validation weighted precision score on DS1. The fitted
SVM classifier was then calibrated via Platt’s method [12]
on DS1.

A sequential forward feature selection (SFFS) was used
on DS1 to find which of the proposed features were the
most important for the heartbeat classification task.

3. Results

The grid-search lead to set C' = 78.5. Table 2 depicts
the confusion matrices of the Hermite features-base (pro-
posed) technique and Llamedo’s approach [11] on DS2 for
the detection of V’ beats. Figure 3 shows the evolution of
the precision cross validation scores obtained during the
feature selection process woth increasing feature subsets.
The first 8 selected features are the forward and backward
RR intervals, rr_mean features, and higher order Hermite
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Figure 2. Record preprocessing pipeline.

0.952 1

0.950

0.948 1

0.946

0.944

herm4
rr_forward
herm3 -
rr_mean60 q
herm1 -

rm_mean180

rr_backward

herm7
herm5 -
herm2

selected feature

hermO -

cosenl80
cosen60

Figure 3. Feature selection on MIT database DS1.

Table 4. F1 scores for DS2 and MRI database for Llamedo
baseline and Hermite based classifiers.

decomposition coefficients. More sophisticated HRV fea-
tures, such as CoSEn, were among the last ones selected.

Table 3 shows the confusion matrices of the Hermite-
based classifier on the MRI database. The Llamedo base-
line classifier only predicted V’ beats on this database.
Table 3 shows the F1 scores for both classifiers on both
databases. Overall the F1 score drops from 0.85 for the
V’ class to 0.15 when going from the MIT-BIH DS2 to the
MRI database. A first drop of the F1 score from 0.85 to
0.30 can be noticed in the detection of V’ beats between
DS2 and the MRI database OF.

A second drop from 0.30 to 0.21 is observed in the F1
score between OF and IF. A significant increase of V’ false
positives can be noticed when comparing IF and IS results,
as seen on Table 3. These additional false positives lead to
a drop of F1 score from 0.21 to 0.13 when comparing in
bore recordings with recordings when MRI sequences are
played (additional RF and gradient artifacts).

4. Discussion

A heartbeat classifier based on morphological and tem-
poral features was implemented to detect ventricular beats
from ECG signals obtained in a MRI environment. The
proposed technique is based on morphological features as-
sumed to be less distorted in MRI, and the classifier was
trained on a standard ECG database (MIT-BIH arrhythmia
database) and tested on a in-house ECG in MRI database.

The fact that rr_forward and rr_backward are among the
first selected is consistent with the Llamedo’s model [11].

Overall the drop of F1 score between DS2 and the MRI
database from 0.85 to 0.15 may show that directly plug-
ging a heartbeat classifier from standard ECGs to ECGs
obtained in MRI is not applicable in clinical practice.
Without the difficulties related to MRI scanners, the drop
of F1 between DS2 and OF already suggests difficulties
to transfer the classifier fitted on DS1 to the ECG setup
from MRI database. For both the Hermite features and
Llamedo’s classifier, features were mainly based on lead
II from the MIT-BIH database, while the ECG 1 from the
MRI database was considered as a first approximation of
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lead II for the obtained classifier. This is even worse for
the classifier from [11] as the wavelet-based features used
the two channels of the ECG in MIT database, and the sec-
ond lead on MIT database is most often a precordial lead
(V1, V2, V5). This second lead was approximated by lead
ECG3 in the proposed test, which may explain why the
baseline classifier already always predicts V’ beats even
outside MRI. Hence, finding a lead-independent represen-
tation of the heartbeats, through the choice of the com-
puted features, or by introducing a preprocessing such as a
PCA to project the heartbeats on the main heart electrical
axis could help to deal with this issue.

The drop of 0.09 in F1 score between the OF and IF con-
dition on the MRI database might be mainly explained by
the ditortion of the ECG signal by the MHD effect. This
suggests the Hermite-based features are still affected by
the MHD effect although the analysis window was focus-
ing on the QRS complex.

The drop of F1 score between IF and IS conditions
was expected as MRI pulse sequences introduce signifi-
cant gradient noise. This result highlights the need to re-
duce this type of interference. Some techniques based on
Kalman or particle filtering have already been applied for
removing this type of noise [8] and have been successful
in improving performance on QRS detection tasks in MRI
[9]. A next step would be to apply these denoising methods
as a preprocessing before the heartbeat classification.

This assessment showed the need to introduce spe-
cific signal preprocessing to remove MRI related noise to
improve the heartbeat classifier performance inside MRI
scanners, while also probaly the need to retrain the classi-
fier on ECG IN MRI data. However given the paucity of
databases with annotated pathological heartbeats in MRI
[2,8], assessing transfer learning approaches from conven-
tional ECG to ECG in MRI would be an interesting avenue
of research for future works.
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